Читать книгу 120 практических задач онлайн

– RNN (или LSTM) слои: Применяются для обработки последовательности признаков, извлеченных из CNN слоев. Это позволяет модели учитывать контекст и последовательность речи при распознавании.


Пример архитектуры нейронной сети:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, LSTM, Dense, Dropout, BatchNormalization

# Пример архитектуры нейронной сети для распознавания речи

input_shape = (audio_length, num_mfcc_features, 1) # размеры входных данных (длина аудио, количество MFCC признаков)

model = Sequential()

# Convolutional layers

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

# Recurrent layers

model.add(LSTM(128, return_sequences=True))

model.add(LSTM(128))

# Dense layers

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.3))

model.add(Dense(num_classes, activation='softmax')) # num_classes – количество классов для классификации

# Компиляция модели

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary()

```

Пояснение архитектуры:

1. Convolutional layers: Слои свертки помогают извлекать пространственные признаки из спектрограмм аудио.

2. Recurrent layers: LSTM слои обрабатывают последовательности признаков, извлеченных из спектрограммы. В данном примере используется два LSTM слоя.

3. Dense layers: Полносвязные слои используются для классификации или распознавания текста, в зависимости от задачи.

4. Компиляция модели: Модель компилируется с оптимизатором Adam и функцией потерь `sparse_categorical_crossentropy` для многоклассовой классификации.