Читать книгу 120 практических задач онлайн
predicted_temperature = scaler.inverse_transform(predicted_temperature)
# Визуализация результатов
plt.figure(figsize=(10, 6))
plt.plot(data['date'][train_size + look_back + 1:], test, label='Истинные значения')
plt.plot(data['date'][train_size + look_back + 1:], predicted_temperature, label='Прогноз')
plt.title('Прогноз температуры с использованием LSTM')
plt.xlabel('Дата')
plt.ylabel('Температура')
plt.legend()
plt.show()
```
Пояснение архитектуры и процесса:
1. Подготовка данных: В примере мы создаем вымышленные данные о температуре. Данные масштабируются с использованием `MinMaxScaler` для нормализации в диапазоне [0, 1]. Затем данные разделяются на обучающую и тестовую выборки.
2. Формирование датасета для LSTM: Функция `create_dataset` создает датасет, разделенный на признаки (`X`) и целевую переменную (`Y`) с заданным количеством временных шагов (`look_back`).
3. Построение LSTM модели: Модель состоит из двух слоев LSTM с уровнем отсева `Dropout` для предотвращения переобучения. Выходной слой является полносвязным слоем `Dense`, который предсказывает следующее значение температуры.
4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функцией потерь `mean_squared_error` для минимизации ошибки прогнозирования.
5. Прогнозирование и визуализация: Модель обучается на данных обучения, затем прогнозирует температуру на тестовом наборе данных. Предсказанные значения обратно масштабируются и визуализируются с истинными значениями.
Преимущества использования LSTM для прогнозирования погоды:
– Учет временных зависимостей: LSTM способны учитывать долгосрочные зависимости в данных о погоде.
– Обработка последовательных данных: Нейронные сети LSTM могут обрабатывать временные ряды без явного определения признаков.
– Прогнозирование на основе исторических данных: LSTM могут использоваться для прогнозирования будущих значений на основе прошлых наблюдений.
Этот подход может быть адаптирован для реальных данных о погоде, что позволяет улучшить точность прогнозирования и обеспечить более эффективное управление ресурсами в зависимости от прогнозируемых метеорологических условий.