Читать книгу 120 практических задач онлайн

# Декодер

decoder_embedding = Embedding(input_dim=num_decoder_tokens, output_dim=latent_dim)(decoder_inputs)

decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)

decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

# Модель для обучения

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Компиляция модели

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary()

```

Пояснение архитектуры и процесса:

1. Подготовка данных: В этом примере предполагается, что данные уже предварительно обработаны и представлены в виде числовых последовательностей (индексов слов или символов).

2. Кодировщик (Encoder): Входные данные на исходном языке проходят через слой встраивания (`Embedding`), который преобразует каждое слово в вектор. LSTM слой кодировщика обрабатывает последовательность входных векторов и возвращает скрытое состояние `encoder_states`.

3. Декодер (Decoder): Входные данные на целевом языке также проходят через слой встраивания. LSTM слой декодера получает на вход векторы слов и скрытое состояние от кодировщика. `decoder_lstm` генерирует последовательность выходных векторов, которые затем подаются на полносвязный слой `decoder_dense` для получения вероятностного распределения над всеми словами в словаре целевого языка.

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функцией потерь `categorical_crossentropy`, если используется one-hot кодирование целевых данных. Можно также использовать другие функции потерь в зависимости от специфики задачи.

5. Использование модели: После обучения модель можно использовать для перевода текста на новых данных, подавая входные последовательности на кодировщик и прогнозируя выходные последовательности с помощью декодера.


Преимущества использования нейронных сетей для машинного перевода :