Читать книгу 120 практических задач онлайн
y_test_classes = np.argmax(y_test, axis=1)
accuracy = np.mean(y_pred_classes == y_test_classes)
print(f'Точность ансамблевой модели: {accuracy:.4f}')
```
Пояснение:
1. Bagging: Random Forest:
– Обучение множества решающих деревьев на различных подвыборках данных и объединение их предсказаний.
2. Boosting: Gradient Boosting:
– Построение серии моделей, каждая из которых исправляет ошибки предыдущей.
3. Voting Classifier:
– Объединение предсказаний нескольких моделей с использованием голосования.
4. Ансамбль с использованием Keras:
– Создание и обучение нескольких моделей нейронных сетей.
– Объединение их предсказаний путем усреднения.
Ансамблевые методы позволяют повысить точность предсказаний за счет комбинирования нескольких моделей, что снижает вероятность ошибки и повышает устойчивость модели к различным типам данных.
11. Классификация новостных статей с использованием RNN
Для классификации новостных статей с использованием рекуррентных нейронных сетей (RNN) используются модели, способные учитывать последовательный характер текстовой информации. В данном случае мы рассмотрим задачу категоризации текстов новостей, где каждая статья должна быть отнесена к определенной категории на основе её содержания.
Построение модели RNN для классификации новостных статей
1. Подготовка данных
Прежде чем начать построение модели, необходимо подготовить данные:
– Загрузить и предобработать тексты новостных статей.
– Преобразовать тексты в числовой формат, который может быть обработан моделью RNN.
– Разделить данные на обучающую и тестовую выборки.
2. Построение модели RNN
Для классификации текстов можно использовать следующую архитектуру RNN:
– Embedding Layer: Преобразует слова в векторные представления.
– RNN Layer (LSTM или GRU): Обрабатывает последовательность слов, учитывая их контекст.
– Полносвязные слои: Используются для объединения выходов RNN и предсказания категории новости.
Пример кода на Keras для построения модели:
```python
import numpy as np