Читать книгу 120 практических задач онлайн

Шаги

1. Импорт библиотек и загрузка модели.

2. Создание Flask приложения.

3. Определение маршрутов для API.

4. Запуск сервера.

Пример кода:

1. Импорт библиотек и загрузка модели

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели (предполагается, что модель сохранена в формате .h5)

model = tf.keras.models.load_model('path_to_your_model.h5')

```

2. Создание Flask приложения

```python

app = Flask(__name__)

```

3. Определение маршрутов для API

```python

@app.route('/predict', methods=['POST'])

def predict():

# Получение данных из POST запроса

data = request.get_json()

# Преобразование данных в формат, подходящий для модели

# Предположим, что данные представляют собой изображение в виде списка пикселей

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist()})

# Маршрут для проверки работы сервера

@app.route('/')

def home():

return "API для предсказаний работает!"

```

4. Запуск сервера

```python

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000)

```

Полный пример кода:

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели

model = tf.keras.models.load_model('path_to_your_model.h5')

# Создание Flask приложения

app = Flask(__name__)

# Определение маршрута для предсказания

@app.route('/predict', methods=['POST'])

def predict():

# Получение данных из POST запроса

data = request.get_json()

# Преобразование данных в формат, подходящий для модели

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist()})