Читать книгу 120 практических задач онлайн

2. Подготовка данных

Прежде чем начать построение модели, данные должны быть подготовлены и нормализованы. Для примера мы будем использовать набор данных MNIST, содержащий изображения цифр от 0 до 9.

3. Построение модели автоэнкодера


Пример кода на TensorFlow для построения простого автоэнкодера:

```python

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

# Загрузка данных MNIST

(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

# Нормализация данных (приведение к диапазону [0, 1])

x_train = x_train.astype('float32') / 255.0

x_test = x_test.astype('float32') / 255.0

# Преобразование данных в одномерный вектор (784 пикселя для каждого изображения 28x28)

x_train = x_train.reshape((len(x_train), 784))

x_test = x_test.reshape((len(x_test), 784))

# Размерность скрытого представления

encoding_dim = 32 # выбираем размерность меньше, чем размерность входных данных

# Входной слой автоэнкодера

input_img = Input(shape=(784,))

# Кодирование входных данных в скрытое представление

encoded = Dense(encoding_dim, activation='relu')(input_img)

# Декодирование скрытого представления в выходные данные

decoded = Dense(784, activation='sigmoid')(encoded)

# Модель автоэнкодера, преобразующая входные данные в восстановленные данные

autoencoder = Model(input_img, decoded)

# Компиляция модели с использованием оптимизатора 'adam' и функции потерь 'binary_crossentropy'

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# Обучение автоэнкодера

autoencoder.fit(x_train, x_train,

epochs=50,

batch_size=256,

shuffle=True,

validation_data=(x_test, x_test))

# Использование автоэнкодера для кодирования и декодирования данных

encoded_imgs = autoencoder.predict(x_test)

```

Пояснение по коду:

1. Загрузка данных: Мы загружаем набор данных MNIST и нормализуем пиксели изображений, чтобы они находились в диапазоне [0, 1].

2. Архитектура автоэнкодера: Модель состоит из одного скрытого слоя `encoded`, который сжимает входные данные до размерности `encoding_dim`, а затем из одного выходного слоя `decoded`, который восстанавливает изображения обратно к их исходному размеру.