Читать книгу Информатика и ИТ. Нейросети онлайн
21*10—5102
102
BD6E10000.
Четырех байтовый формат хранения представляет числа в диапазоне 3,4*10-38-3,4*1038; точность этого формата составляет 7 знаков в десятичном представлении.
123456789,987654321 → 123456800,0.
Числа двойной точности обычно не являются результатами измерений, но позволяют избежать накопления ошибок округления при вычислениях.
В двойном формате порядок занимает 11 разрядов, а мантисса – 52 разряда.
8 -ми байтовый формат представляет числа в диапазоне ±4,9*10—324 – 4,9*10324; формат двойной точности в десятичном представлении составляет 15 знаков, смещение порядка равно 1024.
1.234568Е+08Е+08
2.2.Компьютерная арифметика. Булевы функции
Компьютерная арифметика.
В двоичной системе, как и в любой системе счисления возможны все арифметические операции: сложение, вычитание, умножение, деление.
При этом, целочисленное представление чисел позволяет применить правила непосредственно к хранящимся данным. Использование представления с плавающей точкой в операциях сложения и вычитания требует предварительного выравнивания порядков чисел-операндов, и результат вычислений подвергается нормализации. При умножении и делении вещественных чисел порядок результата вычисляется соответственно сложением (вычитанием) порядков операндов, а мантисса – перемножением (делением) мантисс операндов.
Сложение.
Сложение чисел нужно производить поразрядно, начиная с младшего разряда. При этом применяются следующие правила:
битом переноса
Умножение.
Точно так же, как и при умножении двоичных чисел, мы умножаем первое число на каждый разряд второго и записываем полученные результаты под первой чертой, одно под другим со сдвигом. Затем полученные промежуточные результаты складываем с учетом сдвига. Однако в случае с двоичными числами имеется одно существенное отличие. Так как любой разряд двоичного числа либо ноль, либо единица, то промежуточное умножение сильно облегчается. В самом деле, любое число, умноженное на единицу, равно самому себе. Любое число, умноженное на ноль, равно нулю. Именно поэтому умножение двух двоичных чисел сводится к операциям сдвига и сложения. Это очень важно для построения вычислительных машин. Для реализации операций сложения и умножения нужны только сумматоры и сдвиговые регистры.