Читать книгу Информатика и ИТ. Нейросети онлайн

2 (10)8 (10)16 (10)

Запись чисел в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления представлены в таблице кодирования.

Таблица 2.1.

Таблица кодирования



Одинаковый принцип формирования чисел в позиционных системах счисления позволяет использовать алгоритм перевода из одной системы счисления в другую.

Правила перевода чисел из одной системы счисления в другую

Правила перевода числа произвольной системы счисления в десятичную систему счисления:

– Проставить номера позиций цифр в числе (начиная от запятой влево и вправо);

– Каждую цифру числа умножить на основание системы счисления в степени соответствующей номеру позиции;

– Перевести значения цифр в десятичные (для 16-ричных чисел, для систем счисления с основаниями 2 и 8 не требуется);

– Вычислить сумму полинома.

16



16

  • = 15·16+11·16+0·16—1 +13·8—2=
  • 251.468
  • 16251.468

Правила перевода десятичного числа в иную систему счисления

– Целую часть числа последовательно делить нацело на основание системы счисления. «Собрать» остатки от деления, начиная с остатка от последнего.

– Дробную часть числа последовательно умножать на основание системы счисления, «сдвигая» целую часть произведений и продолжая умножение только дробной части, до заданной точности. «Собрать» целые части произведений, начиная с первого.

– При переводе в шестнадцатеричную систему счисления перевести значения результирующих цифр в шестнадцатеричные.

– Записать число (целую и дробную часть) и указать систему счисления.

Рассмотрим пример использования данного алгоритма для перевода числа 3338,78 в шестнадцатеричную систему счисления с точностью до четырех знаков после запятой




1616161616

3338,7816

16

Связь двоичной, восьмиричной и шестнадцатиричной систем счисления

Между системами счисления с основаниями 2, 8 и 16 существует связь, позволяющая легко переводить числа из одной системы в другую, используя следующий метод:

В двоичном числе от десятичной запятой вправо и влево выделять группы цифр по три – для перевода в восьмеричную и по четыре – для перевода в шестнадцатеричную (такие группы называются соответственно триадами и тетрадами). Если в конечных группах будет недостаточно цифр, то в группы следует добавить нули.