Читать книгу Информатика и ИТ. Нейросети онлайн
Каждую группу независимо от других перевести в одну соответственно восьмеричную или шестнадцатеричную цифру. Для обратного перевода (из восьмеричной или шестнадцатеричной – в двоичную) нужно проделать обратную операцию – каждую цифру вправо и влево заменить группой соответственно из трех или четырех двоичных знаков.
Примеры
Пример №1
2
2
В двоичном числе от запятой вправо и влево выделим группы цифр по четыре – тетрады. При недостатке цифр в тетраде добавим нули (в начале или конце).
2
2
По таблице кодирования определим соответствие записей в двоичной и шестнадцатеричной системам:
216
216
216
216
216
Проведем замену тетрад цифрами шеснадцатиричной системы:
216
216
Пример №2
8
8
- Цифре 5 восьмиричной системы счисления в таблице кодирования соответствует триада двоичной системы 101, таким же образом определяем триады для других цифр.
- 82
- 82
- 82
- 82
- 82
- 82
- Ответ запишем, заменив восьмиричную цифру триадой:
- 82
- Представление чисел в компьютере
Современный персональный компьютер позволяет работать с разнообразными данными: числами, символьными данными (текстом), графическими данными, звуковыми данными.
Все данные в компьютере хранятся и обрабатываются в унифицированном (единообразном) виде – двоичном цифровом коде. Требуется это для того, чтобы большое количество различных видов данных можно было обрабатывать одним устройством.
Числа, используемые человечеством, представляют бесконечно непрерывный ряд, различаются на положительные и отрицательные числа, целые и дробные, рациональные и иррациональные. Реализовать представление такого бесконечного множества в технических устройствах невозможно. Необходимы ограничения, как диапазона, так и точности представления чисел, система компьютерного представления чисел конечна и дискретна. В компьютерах размеры ячеек памяти (регистров) фиксированы, причем ограничения налагаются и на диапазон, и на точность представления чисел. Кроме того целесообразно представлять числа в той форме, на которую требуется меньшее количество компьютерной памяти.
При разделении записи числа на составляющие (знак числа, значение числа, знак порядка, значение порядка) легче перейти к конечной и дискретной форме, необходимой для представления в компьютере.