Читать книгу 120 практических задач онлайн
from tensorflow.keras.layers import Dense, Dropout
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
# Пример данных (данные нужно подставить под ваши)
# X – признаки (характеристики домов)
# y – цены на недвижимость
X = np.random.random((1000, 10)) # пример матрицы признаков
y = np.random.random((1000, 1)) # пример вектора цен
# Масштабирование данных
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
y_scaled = scaler.fit_transform(y)
# Разделение данных на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42)
# Параметры модели и обучения
input_dim = X.shape[1] # количество признаков
hidden_units = 64 # количество нейронов в скрытом слое
dropout_rate = 0.2 # коэффициент отсева для предотвращения переобучения
# Создание модели
model = Sequential()
# Добавление слоев
model.add(Dense(hidden_units, input_dim=input_dim, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(hidden_units, activation='relu'))
model.add(Dense(1)) # выходной слой для предсказания цены
# Компиляция модели
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae']) # метрика – средняя абсолютная ошибка
# Вывод архитектуры модели
model.summary()
# Обучение модели
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
```
Пояснение архитектуры и процесса:
1. Архитектура модели: Пример представляет собой простую нейронную сеть с несколькими полносвязными слоями. Входной слой имеет размерность, соответствующую количеству признаков (характеристик дома), скрытые слои используют функцию активации ReLU для обеспечения нелинейности, а выходной слой предсказывает цену недвижимости как числовое значение.
2. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam для эффективного обучения, функцией потерь mean squared error (среднеквадратичная ошибка) для задачи регрессии и метрикой mean absolute error (средняя абсолютная ошибка) для оценки точности модели.