Читать книгу 120 практических задач онлайн
Пример архитектуры модели SSD для обнаружения лиц:
```python
import tensorflow as tf
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import Conv2D, Reshape
from tensorflow.keras.models import Model
# Загрузка предварительно обученной модели MobileNetV2 без полносвязных слоев
base_model = MobileNetV2(input_shape=(224, 224, 3), include_top=False, weights='imagenet')
# Замораживаем веса предварительно обученной модели
base_model.trainable = False
# Добавляем дополнительные слои для детекции лиц
x = base_model.output
x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
predictions = Conv2D(4, (3, 3), activation='sigmoid', name='face_detection')(x) # 4 координаты bounding box'а
# Компилируем модель
model = Model(inputs=base_model.input, outputs=predictions)
# Вывод архитектуры модели
model.summary()
```
2. Отслеживание лиц в видео
После обнаружения лиц на каждом кадре видео необходимо отслеживать эти лица в последующих кадрах. Для этого можно использовать алгоритмы отслеживания объектов, такие как Kalman Filter или SORT (Simple Online and Realtime Tracking). В данном примере рассмотрим использование SORT для отслеживания лиц.
Пример использования SORT для отслеживания лиц:
```python
from sort import Sort # pip install sort
tracker = Sort()
# Пример получения bounding box'ов из модели детекции лиц
frames = [] # список кадров видео
# Для каждого кадра:
# Получаем bounding box'ы с помощью модели детекции лиц
# Передаём bounding box'ы в SORT для отслеживания
detections = model.predict(frame)
tracked_objects = tracker.update(detections)
# Отрисовываем tracked_objects на кадре видео
```
Пояснение архитектуры и процесса:
1. Детектор лиц на основе CNN: В примере используется MobileNetV2 как базовая модель без полносвязных слоев. Мы добавляем несколько свёрточных слоёв для улучшения точности детекции лиц. Финальный слой используется для предсказания bounding box'ов лиц на изображении.