Читать книгу 120 практических задач онлайн

1. Предварительно обученная модель (Transfer Learning): В примере используется MobileNetV2, предварительно обученная на большом наборе данных ImageNet. Мы загружаем модель без полносвязных слоев (`include_top=False`) и замораживаем её веса, чтобы сохранить обучение, полученное на ImageNet.

2. Добавление собственных слоев: К предварительно обученной модели добавляются дополнительные сверточные (`Conv2D`) и полносвязные (`Dense`) слои. Эти слои помогают извлечь признаки из изображений и выполнить классификацию по полу и возрасту.

3. Функции активации: Для определения пола используется `softmax` с двумя выходами (мужчина и женщина), а для определения возраста также `softmax` с несколькими выходами (например, группы возрастов).

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функциями потерь `binary_crossentropy` для пола и `categorical_crossentropy` для возраста, соответствующими задачам классификации.


Преимущества использования подхода с использованием transfer learning:

– Использование общих признаков: Transfer learning позволяет использовать знания, полученные на больших наборах данных, для задачи распознавания лиц.

– Улучшение производительности: Использование предварительно обученной модели улучшает производительность и скорость обучения на относительно небольшом наборе данных для задачи определения пола и возраста.

– Адаптивность к различным типам данных: Модель, построенная с использованием transfer learning, может быть адаптирована к различным типам лиц и различным условиям освещения.

Создание модели для определения пола и возраста по фотографии лица с использованием глубокого обучения и transfer learning представляет собой эффективный подход к решению задачи компьютерного зрения, который может быть доработан и оптимизирован для конкретных потребностей и требований задачи.

24. Построение нейронной сети для выявления спама

Задача: Классификация сообщений как спам или не спам

Для построения нейронной сети для выявления спама в текстовых сообщениях можно использовать различные архитектуры, но одной из наиболее эффективных является рекуррентная нейронная сеть (RNN) или её модификации, такие как LSTM (Long Short-Term Memory) или GRU (Gated Recurrent Unit), способные учитывать последовательную природу текстовых данных. Давайте рассмотрим основные шаги и архитектуру модели для такой задачи.