Читать книгу 120 практических задач онлайн

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dense, Dropout

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

import numpy as np

# Пример данных (данные нужно подставить под ваши)

# X – тексты новостей

# y – метки классов (0 – настоящие новости, 1 – фейковые новости)

X = np.array(["Настоящая новость", "Это тоже настоящая новость", "Фейковая новость", "Это фейк", "Фейк для теста"])

y = np.array([0, 0, 1, 1, 1])

# Токенизация и преобразование текстов в последовательности чисел

tokenizer = Tokenizer()

tokenizer.fit_on_texts(X)

X_sequences = tokenizer.texts_to_sequences(X)

# Паддинг последовательностей до одной длины

max_sequence_length = max([len(seq) for seq in X_sequences])

X_padded = pad_sequences(X_sequences, maxlen=max_sequence_length, padding='post')

# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X_padded, y, test_size=0.2, random_state=42)

# Параметры модели и обучения

vocab_size = len(tokenizer.word_index) + 1 # размер словаря

embedding_dim = 100 # размерность векторов вложений

lstm_units = 64 # количество блоков LSTM

dropout_rate = 0.2 # коэффициент отсева для предотвращения переобучения

# Создание модели

model = Sequential()

# Добавление слоев

model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_sequence_length))

model.add(Bidirectional(LSTM(units=lstm_units)))

model.add(Dropout(dropout_rate))

model.add(Dense(1, activation='sigmoid')) # выходной слой для бинарной классификации

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary()

# Обучение модели

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

```

Пояснение архитектуры и процесса: