Читать книгу Искусственный интеллект в здравоохранении онлайн

Система ИИ

данные, набор данных, большие данные аппаратное обеспечение, вычислительная система, база знаний

Вычислительная система

Экспертная система

– четкая ограниченность предметной области;

– способность принимать решения в условиях неопределенности;

– способность объяснять ход и результат решения понятным для пользователя способом;

– четкое разделение данных и механизмов вывода;

– способность пополнять базу данных;

– ориентация на решение неформализованных задач;

– отсутствие гарантий нахождения оптимального решения с возможностью учиться на ошибках;

– также то, что результат выдается в виде конкретных рекомендаций, не уступающих решениям лучших специалистов в конкретной области знаний;

– алгоритм решения не описывается заранее, а строится самой экспертной системой.

Сильнейшей стороной технологий ИИ стала способность к обучению.

Машинное обучение

глубокое обучение

Искусственная нейронная сеть

Сверточная нейронная сеть

Различные варианты нейронных сетей в виде упрощенных схем, позволяющих понять основные принципы их функционирования, показаны на рис. 1.


Рис. 1. Примеры нейронных сетей. Источник: [Van Veen F., Leijnen S. The Neural Network Zoo. 2019. https://www.asimovinstitute.org/neural-network-zoo (дата обращения: 09.09.2023)].


В настоящее время существуют различные типы и алгоритмы машинного обучения (рис. 2).


Рис. 2. Концепции ИИ и МО. Источник: [Machine Learning-enabled Medical Devices…, 2021].


Существует много алгоритмов машинного обучения, отличающихся возможностями и ограничениями. К принципиальным характеристикам, присущим тому или иному алгоритму ИИ, можно отнести [Глизница и др., 2022]:

1. Интерпретируемость – возможность установить основания принятого алгоритмом решения, открыть «черный ящик». Возможность объяснить решение, предлагаемое алгоритмом, значительно облегчает внедрение методов в медицинскую практику.

2. Устойчивость к мультиколлинеарности – корреляционной связи между независимыми переменными, которая негативно сказывается на времени обучения и точности результата. В частности, учет избыточного числа переменных из медицинской карты приводит к формированию слишком сложной модели с несущественными признаками заболевания (эффект переобучения), не способной к обобщению.