Читать книгу 120 практических задач онлайн

5. Построение GAN: Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей.

6. Обучение GAN: GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений:  После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.

8. Построение сложной GAN для генерации реалистичных изображений

Задача: Генерация изображений лиц

Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.

Шаги

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение и компиляция GAN.

6. Обучение GAN.

7. Генерация изображений.


Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import os

import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

import os

# Шаг 2: Подготовка данных

# Загрузка набора данных CelebA

# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'

# Скачивание и подготовка данных не входит в код

DATA_DIR = 'img_align_celeba/img_align_celeba'