Читать книгу Искусственный интеллект. Машинное обучение онлайн

Для этого мы можем использовать алгоритм One-Class SVM для определения аномальных значений пульса.

Рассмотрим пример кода на Python, который реализует это:

```python

from sklearn.svm import OneClassSVM

import numpy as np

# Пример данных о пульсе пациентов (удалены аномальные значения)

pulse_data = np.array([65, 68, 70, 72, 75, 78, 80, 82, 85, 88, 90, 92, 95])

# Добавим аномальные значения

anomalies = np.array([40, 100])

pulse_data_with_anomalies = np.concatenate((pulse_data, anomalies))

# Преобразуем данные в столбец (необходимо для scikit-learn)

pulse_data_with_anomalies = pulse_data_with_anomalies.reshape(-1, 1)

# Создаем модель One-Class SVM

model = OneClassSVM(nu=0.05) # nu – ожидаемая доля аномалий в данных

# Обучаем модель

model.fit(pulse_data_with_anomalies)

# Предсказываем аномалии

anomaly_predictions = model.predict(pulse_data_with_anomalies)

# Выводим индексы аномальных значений

anomaly_indices = np.where(anomaly_predictions == -1)[0]

print("Индексы аномальных значений пульса:", anomaly_indices)

```

В этом примере мы сначала создаем набор данных о пульсе пациентов, затем добавляем в него несколько аномальных значений (40 и 100, что предполагает необычно низкий и высокий пульс соответственно). Затем мы используем One-Class SVM для обнаружения аномалий в данных о пульсе. После обучения модели мы предсказываем аномалии и выводим индексы аномальных значений.

Этот пример демонстрирует, как можно использовать алгоритм One-Class SVM для выявления аномалий в медицинских данных о пульсе пациентов. Подобные методы могут быть полезны для выявления потенциальных проблем здоровья или нештатных ситуаций в медицинских данных.

Давайте представим сценарий, связанный с мониторингом сетевой активности компьютерной сети. Предположим, у нас есть набор данных, содержащий информацию о сетевом трафике, и мы хотим выявить аномальную активность, которая может указывать на попытки вторжения или другие сетевые атаки.

В этом примере мы будем использовать библиотеку PyOD, которая предоставляет реализации различных алгоритмов для обнаружения аномалий в данных.