Читать книгу Искусственный интеллект. Машинное обучение онлайн
Наконец, можно обучать модели на нормальных данных и выявлять аномалии на основе их отклонения от этой модели. Например, можно использовать автоэнкодеры в нейронных сетях для обучения модели на нормальных данных и затем оценивать реконструкцию новых наблюдений. Наблюдения, которые плохо восстанавливаются моделью, могут рассматриваться как аномальные.
Давайте рассмотрим пример использования алгоритма Isolation Forest для выявления аномалий в наборе данных.
Предположим, у нас есть данные о времени выполнения операций в компьютерной сети, и мы хотим выявить аномальные операции, которые могут указывать на наличие сбоев или атак в системе.
Воспользуемся библиотекой scikit-learn для реализации Isolation Forest:
```python
from sklearn.ensemble import IsolationForest
import numpy as np
# Пример данных о времени выполнения операций (в миллисекундах)
data = np.array([100, 120, 105, 110, 115, 130, 150, 200, 300, 400, 1000])
# Преобразуем данные в столбец (необходимо для scikit-learn)
data = data.reshape(-1, 1)
# Создаем модель Isolation Forest
model = IsolationForest(contamination=0.1) # contamination – ожидаемая доля аномалий в данных
# Обучаем модель
model.fit(data)
# Выявляем аномалии
anomalies = model.predict(data)
# Выводим индексы аномальных операций
print("Индексы аномальных операций:", np.where(anomalies == -1)[0])
```
В данном примере мы создаем модель Isolation Forest с ожидаемой долей аномалий в данных 0.1 (10%), обучаем ее на времени выполнения операций, а затем выявляем аномалии. В результате мы получаем индексы аномальных операций, которые превышают пороговое значение, установленное моделью.
Этот пример демонстрирует, как можно использовать Isolation Forest для выявления аномалий в данных времени выполнения операций. Другие методы, такие как One-Class SVM, могут быть использованы аналогичным образом для решения подобных задач.
Для другого примера давайте рассмотрим ситуацию с медицинскими данными. Предположим, у нас есть набор данных о пульсе пациентов, и мы хотим выявить аномальные показатели пульса, которые могут указывать на серьезные медицинские проблемы.