Читать книгу Искусственный интеллект. Машинное обучение онлайн

Кроме того, анализ корреляции позволяет определить связь между переменными: положительная корреляция указывает на то, что значения двух переменных изменяются в одном направлении, отрицательная корреляция – на изменение в противоположных направлениях, а нулевая корреляция – на отсутствие связи между переменными. Эти статистические метрики помогают исследователям и аналитикам получить глубокое понимание данных, выявить аномалии и принять обоснованные решения на основе полученных результатов.

Давайте рассмотрим пример статистического анализа данных с использованием Python и библиотеки Pandas. Предположим, у нас есть набор данных о росте и весе людей, и мы хотим провести предварительный анализ этих данных.

```python

import pandas as pd

# Создание DataFrame с данными

data = {

'Рост': [165, 170, 175, 180, 185],

'Вес': [60, 65, 70, 75, 80]

}

df = pd.DataFrame(data)

# Вывод основных статистических метрик

print("Среднее значение роста:", df['Рост'].mean())

print("Медиана роста:", df['Рост'].median())

print("Стандартное отклонение роста:", df['Рост'].std())

print("Первый квартиль роста:", df['Рост'].quantile(0.25))

print("Третий квартиль роста:", df['Рост'].quantile(0.75))

print()

# Вывод корреляции между ростом и весом

print("Корреляция между ростом и весом:", df['Рост'].corr(df['Вес']))

```

В этом примере мы сначала создаем DataFrame с данными о росте и весе людей. Затем мы используем методы Pandas для вычисления различных статистических метрик, таких как среднее значение, медиана, стандартное отклонение и квартили для переменной "Рост". Мы также вычисляем корреляцию между ростом и весом, чтобы определить, есть ли связь между этими переменными.

Этот пример демонстрирует, как можно использовать Python и библиотеку Pandas для проведения статистического анализа данных и получения основных характеристик набора данных.

Среднее значение роста: 175.0

Медиана роста: 175.0

Стандартное отклонение роста: 7.905694150420948

Первый квартиль роста: 170.0

Третий квартиль роста: 180.0

Корреляция между ростом и весом: 1.0