Читать книгу Века сквозь математику, или Как математики раз за разом мир вертели онлайн
У Евклида к аксиомам отнесены как бы общематематические вещи (например: "равные одному и тому же равны между собой" – это, скорее, относится не к геометрии, а к определению слова "равны"; или "Половины одного и того же равны между собой" – а это тоже, скорее, не аксиома, а определение слова половина. Ну, и т.д.), а к постулатам уже вещи сугубо геометрические: "две любые точки можно соединить прямой", "из всякого центра и всяким раствором может быть описан круг" и т.д.
У Евклида как излагаются определения, постулаты, так же и теоремы, но и разобрано много задач с решениями. Очень много среди них – задачи на построение чего-либо циркулем (правда, под циркулем Евклид понимал что-то чуть-чуть другое) и линейкой.
/*Всем, кто хочет почувствовать себя Евклидом, я крайне рекомендую игру, которая называется
6.1
А чего же в «Началах» не было?
Все, да не все включил в книгу Евклид. Скажем, задачи на построение циркулем и линейкой он включает, а любые задачи на построение с помощью других инструментов – нет, не включает.
Так в «Начала» Евклида не входят три знаменитые неразрешимые задачи на построение (см.[12]).
Рисунок 6.3: Решение Архимеда задачи о трисекции угла
методом "вставки".
Задача удвоения куба. Построить отрезок такой, чтобы куб с таким ребром имел вдвое больший объем, чем заданный. (Иначе говоря: дан отрезок, построить другой отрезок, который будет длиннее данного раз).
Задача о квадратуре круга. Построить квадрат, равновеликий заданному кругу (или же наоборот: построить круг, равновеликий заданному квадрату)6.
Трисекция угла. Разделить угол на три равные части (не на две, как биссектрисой, а на 3).
Математики разных времен пытались эти задачи решать. Естественно, не упомянуто, но подразумевается, что надо решать эти задачи с помощью циркуля и линейки. И с помощью циркуля и линейки у них не получалось. Зато иногда получалось с помощью других инструментов. Архимед, например, кажется, придумал, как с помощью разных инструментов решать все три эти задачи. Правда, Архимед жил позже Евклида (мы до него еще не дошли), но смысл тот же.