Читать книгу Искусственный интеллект в прикладных науках. Медицина онлайн


SIR

Система дифференциальных уравнений для SIR-модели включает три уравнения, описывающих изменение численности каждой группы с течением времени. Первое уравнение описывает скорость изменения числа подвергшихся инфекции, которая уменьшается по мере того, как они выздоравливают и становятся иммунными к болезни. Второе уравнение описывает скорость изменения числа инфицированных, которая зависит от количества подвергшихся инфекции и скорости распространения болезни. Третье уравнение описывает скорость изменения числа выздоровевших, которая зависит от количества инфицированных и скорости выздоровления от болезни.

SIR-модель является полезным инструментом для анализа и прогнозирования эпидемических ситуаций, особенно в случаях, когда нет необходимости учитывать подверженные состояния или когда количество новых случаев заражения невелико. Эта модель может помочь оценить влияние различных факторов на динамику эпидемии и предсказать ее дальнейшее развитие, что позволяет принимать более информированные решения в области общественного здравоохранения.

Рассмотрим пример кода на Python для реализации SIR-модели:

```python

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

# Определение функции, представляющей систему дифференциальных уравнений SIR-модели

def sir_model(y, t, beta, gamma):

S, I, R = y

dSdt = -beta * S * I

dIdt = beta * S * I – gamma * I

dRdt = gamma * I

return [dSdt, dIdt, dRdt]

# Начальные условия: количество подвергшихся инфекции, инфицированных и выздоровевших

S0 = 0.99

I0 = 0.01

R0 = 0.0

# Временные параметры

t = np.linspace(0, 200, 1000) # Временной интервал: от 0 до 200 дней, 1000 точек

# Коэффициенты модели: скорость передачи болезни (beta) и скорость выздоровления (gamma)

beta = 0.3

gamma = 0.1

# Решение системы дифференциальных уравнений

solution = odeint(sir_model, [S0, I0, R0], t, args=(beta, gamma))

# Построение графика

plt.plot(t, solution[:, 0], label='Подверженные') # Подверженные

plt.plot(t, solution[:, 1], label='Инфицированные') # Инфицированные