Читать книгу Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта онлайн

– Вопросы этики и безопасности ИИ становятся всё более актуальными. Исследования сосредоточены на создании ответственного и прозрачного ИИ, а также на изучении потенциала ИИ для решения глобальных проблем.


История ИИ – это история чередования периодов оптимизма и скептицизма, инноваций и прорывов, которая продолжает развиваться с каждым десятилетием.

– Основные концепции и терминология

В области искусственного интеллекта существует множество концепций и терминов, которые помогают описать различные аспекты этой широкой и многофасетной дисциплины. Вот некоторые из основных концепций и терминов:


1. Алгоритм машинного обучения (Machine Learning Algorithm): Процедура или формула для анализа данных и принятия решений на основе этих данных.


2. Обучение с учителем (Supervised Learning): Тип машинного обучения, при котором модель обучается на основе входных данных и соответствующих им выходных данных, предоставленных человеком.


3. Обучение без учителя (Unsupervised Learning): Тип машинного обучения, при котором модель ищет скрытые структуры в данных без явных инструкций о том, что представляют собой эти структуры.


4. Обучение с подкреплением (Reinforcement Learning): Тип машинного обучения, при котором агент учится принимать решения, выполняя действия в среде и получая положительные или отрицательные награды.


5. Нейронная сеть (Neural Network): Вычислительная модель, вдохновленная структурой мозга, состоящая из слоев нейронов, которые обрабатывают данные и передают сигналы.


6. Глубокое обучение (Deep Learning): Подмножество машинного обучения, использующее сложные нейронные сети с множеством слоев (глубокие нейронные сети) для анализа данных.


7. Искусственный нейрон (Artificial Neuron): Основная вычислительная единица нейронной сети, имитирующая работу биологического нейрона.


8. Функция активации (Activation Function): Функция в искусственном нейроне, которая определяет, насколько сильно будет активирован нейрон в ответ на входные данные.


9. Обратное распространение (Backpropagation): Метод обучения нейронных сетей, при котором ошибка выходных данных используется для корректировки весов сети.