Читать книгу Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков онлайн

3. Стохастические алгоритмы оптимизации:

поиск в случайном направлении,

имитация отжига,

метод Монте-Карло (численный метод статистических испытаний).

4. Алгоритмы глобальной оптимизации (задачи глобальной оптимизации решаются с помощью перебора значений переменных, от которых зависит целевая функция).

2.8. Алгоритм обучения однослойного нейрона

Обучение нейронной сети в задачах классификации происходит на наборе обучающих примеров X(1), X(2), …, X(Р), в которых ответ – принадлежность к классу А или B – известен. Определим индикатор D следующим образом: положим D(X)=1, если X из класса А, и положим D(X)=0, если X из класса B, то есть



12 n

Задача обучения персептрона состоит в нахождении таких параметров w1, w2, …, wn и h, что на каждом обучающем примере персептрон выдавал бы правильный ответ, то есть



Если персептрон обучен на большом числе корректно подобранных примеров и равенство (2.2) выполнено для почти всех X(i),i=1,Р, то в дальнейшем персептрон будет с близкой к единице вероятностью проводить правильную классификацию для остальных примеров. Этот интуитивно очевидный факт был впервые математически доказан (при некоторых предположениях) в основополагающей работе наших соотечественников В. Вапника и А. Червоненскиса еще в 1960-х годах.

На практике, однако, оценки по теории Вапника – Червоненскиса иногда не очень удобны, особенно для сложных моделей нейронных сетей. Поэтому практически, чтобы оценить ошибку классификации, часто поступают следующим образом: множество обучающих примеров разбивают на два случайно выбранных подмножества, при этом обучение идет на одном множестве, а проверка обученного персептрона – на другом.

Рассмотрим подробнее алгоритм обучения персептрона.

Шаг 1. Инициализация синаптических весов и смещения.

i

Обозначим через wi(t), i=1,n вес связи от i-го элемента входного сигнала к нейрону в момент времени t.

Шаг 2. Предъявление сети нового входного и желаемого выходного сигналов.

12 n

Шаг 3. Адаптация (настройка) значений синаптических весов. Вычисление выходного сигнала нейрона.