Читать книгу Искусственный интеллект в психиатрии: достижения, перспективы, проблемы онлайн
Keywords:
Information about the author:
Bogdanov Yaroslav Vyacheslavovich – e-mail: yarik@yabogdanov.ru ; https://orcid.org/0009-0002-3880-7152
To cite thise article:
Автор, ответственный за переписку: Богданов Ярослав Вячеславович – e-mail: yarik@yabogdanov.ru
Correstonding author: Bogdanov Yaroslav Vyacheslavovich – e-mail: yarik@yabogdanov.ru
Введение
Актуальность
Наблюдается устойчивый рост научных публикаций, посвященных применению искусственного интеллекта в психиатрии. Значительное количество работ в этой области были опубликованы в 2021-2023 годах, что демонстрирует высокий интерес к данной теме. Поэтому необходим систематический анализ научных публикаций для выявления основных тенденций и перспектив развития этого направления.
Цель исследования: проанализировать текущее состояние и перспективы применения искусственного интеллекта в психиатрии, охватывая различные области: диагностику, терапию, направление исследований, выявить основные вызовы, связанные с внедрением искусственного интеллекта (ИИ) в психиатрическую практику.
Материал и методы:
Результаты
По результатам поиска в обзор включена 131 работа. Проанализирована информация о текущем состоянии достижений и представлений по вопросам применения ИИ в психиатрии.
Актуальность проблемы применения ИИ в психиатрии
Психические расстройства (ПР) – одна из распространенных и сложных проблем в здравоохранении [9, 121]. Их диагностика и лечение требуют больших ресурсов и высокой компетенции специалистов [121]. ПР являются одной из основных причин нетрудоспособности и ухудшения качества жизни во всем мире, к 2030 году они станут крупнейшим фактором глобальной заболеваемости [98]. Развитие новых подходов, основанных на ИИ, рассматривается как один из перспективных путей трансформации психиатрической помощи, которая поможет справиться с современными вызовами [47, 72]. Первыми попытками применения ИИ в психиатрии стали компьютерные программы, имитирующие речь психотерапевта (ELIZA), разработанная в 1960-х годах [100]. В 1971 году была создана компьютерная модель, воспроизводящая паранойяльные процессы в условиях психиатрического интервью – система PARRY и BlueBox для фармакотерапии депрессий [100]. Эта система демонстрировала успехи, но имела ограничения, связанные с формализацией медицинских знаний. Компьютеризация психиатрической диагностики очень сложна, это отметил в своей работе Рыбальский М.И. [15]. Психиатрическая диагностика основана на качественной оценке расстройств высших психических функций, что трудно поддается формализации и программированию. Для создания психиатрических экспертных систем (ЭС) требуются мощные методы представления и интерпретации знаний, учитывающие сложность вербального описания психики [15]. Как показал Servan-Schreiber [100], пациенты часто более откровенны в общении с компьютерными системами. Развитие интеллектуальных обучающихся систем открывает возможности для создания компьютеризированных психотерапевтических методик, особенно в области когнитивно-поведенческой терапии. Рыбальский М.И. [15] подчеркивал, что ЭС должны быть помощниками психиатра, а не заменой ему, поскольку психиатрическая диагностика влияет на социально-правовой статус пациента. По мнению Wilhelmy et al., цифровая трансформация и внедрение ИИ многообещающи для профилактики, диагностики и терапии ПР [120]. Kargbo обозначает три ключевых направления изменений в психиатрии: использование биомаркеров, психоделических препаратов и применение ИИ [69]. Рассматриваются современные достижения ИИ в психиатрии, отмечается большой потенциал ИИ для трансформации психиатрической помощи в области диагностики, мониторинга состояния пациентов, разработки новых методов лечения [2]. Незнанов Н.Г. полагает, что активное внедрение телемедицинских технологий, изучение роли генетики и микробиома в происхождении психических расстройств, разработка методов диагностики на основе биомаркеров, аватар-терапия и использование искусственных нейронных сетей меняют ландшафт современной психиатрии [13]. Машинное обучение (МО) и обработка естественного языка, активно исследуются для решения широкого круга задач в психиатрии [72]. ИИ-алгоритмы «показали высокую точность в диагностике» ПР, включая шизофрению, депрессию и расстройства аутистического спектра, на основе данных электронных медицинских карт, нейровизуализации и "цифровых фенотипов" [31, 76, 92]. ИИ применяется для прогнозирования течения заболеваний и ответа на лечение [76, 121]. Внедрение ИИ также открывает новые возможности в области терапии – от разработки виртуальных ассистентов и чат-ботов для психообразования и поддержки пациентов, до использования виртуальной и дополненной реальности в психотерапии [9, 47, 52, 76, 90]. Jin et al. описывают применение ИИ в области психического здоровья и цифровой психиатрии [67]. Авторы много места отводят глубокому обучению как одному из методов ИИ. Germine et al. [56] рассматривают проблему масштабирования измерений поведения человека для достижения «высокоточной психиатрии». Авторы отмечают три основные сложности: вовлечение участников, доступность методов и надежное измерение индивидуальных различий. Chen et al. рассматривают роль МО и ИИ в развитии «точной психиатрии» [37]. Авторы обсуждают подходы, сочетающие ИИ-технологии, функциональную нейровизуализацию и методы нейромодуляции, которые могут обеспечить эффективные и объяснимые решения для клинической практики. По данным Hsin et al. [62] психиатрическая практика в значительной степени опирается на субъективные наблюдения, использование объективных данных ограничено. Появление носимых устройств и смартфонов открывает возможность непрерывного мониторинга поведения и биометрии пациентов, что может дополнить традиционные методы оценки [62]. ИИ может использоваться для непрерывного мониторинга состояния пациентов с известными психическими расстройствами, для прогнозирования индивидуальных реакций пациентов на психофармакологические препараты, используя методы глубокого обучения [96]. В перспективе ИИ может оказывать поддержку при выборе оптимальной терапевтической тактики, обсуждается потенциал ИИ в автоматизированной онлайн-психотерапии [96]. Интернет-программы, например MOST, предлагают онлайн-поддержку при психозе и депрессии [51]. Внедрение ИИ в психиатрию может привести к существенным организационным изменениям, Brunn et al. [29] отмечают, что ИИ способен изменить организацию психиатрической помощи, а также интеграцию в здравоохранение в целом. Это может привести к перераспределению обязанностей [29]. Sahoo et al. пишут, что доступ к качественной психиатрической помощи ограничен из-за стигматизации, недостаточного финансирования и нехватки специалистов [16] и, понимая трудности по внедрению ИИ-технологий в психиатрию, возлагают на них большие надежды. Brunn et al. [29] призывают к исследованиям того, как ИИ влияет на организацию медицины, психиатрии и взаимодействие с немедицинскими профессиями. Авторы предлагают подготавливать будущих психиатров через опыт работы с приложениями ИИ, этические дискуссии и трансдисциплинарное сотрудничество [29]. Ряд работ рассматривает перспективы использования ИИ для профилактики ПР и поддержания психического здоровья людей [50, 99]. В частности, Ettman и Galea [50] отмечают, что ИИ может повлиять на психическое здоровье населения через совершенствование психиатрической помощи, изменение социально-экономических условий и политику, регулирующую использование ИИ. Аллен [21] указывает на острую нехватку психиатров во всем мире и отмечает, что ИИ может помочь восполнить этот пробел. Автор рассматривает текущее ограниченное применение ИИ в психиатрии, а также большие перспективы, связанные с цифровым фенотипированием через смартфоны для прогнозирования и понимания состояния пациентов. Лубянко и соавт. [12] отмечают, что ИИ способен имитировать когнитивные функции человека и используется в различных сферах, включая диагностику психических расстройств. В работе описывается проект "psyDI" с применением ИИ для диагностики ПР. Авторы делают вывод, что ИИ может существенно улучшить диагностику в психиатрии, особенно на уровне первичного звена. Статья Tai et al. [106] посвящена потенциалу МО и больших данных для моделирования ПР и разработки новых методов лечения в психиатрии. Авторы отмечают, что в психиатрии отсутствуют общепринятые модели ПР, это затрудняет разработку новых методов лечения. МО может помочь в выявлении значимых факторов для построения более точных моделей. Эти технологии могут способствовать выявлению биомаркеров психических заболеваний, индивидуализации диагностики и лечения, разработке новых методов терапии. Ray et al. [95] дают общий обзор роли ИИ в психиатрии. Авторы отмечают растущее бремя ПР, особенно в Индии, где остро ощущается нехватка психиатров. Преимуществами ИИ в психиатрии являются более низкая стоимость, широкий охват и отсутствие предубеждений, но есть и недостатки, такие как отсутствие эмпатии и угроза конфиденциальности данных. ИИ может помочь в диагностике ПР на основе анализа медицинских данных, визуализации и обработки изображений, а также в мониторинге поведения и эмоций пациентов. ИИ также может использоваться для персонализации лечения, разработки новых методов терапии и создания интерактивных терапевтических приложений. Вместе с тем, современный ИИ все еще ограничен и должен рассматриваться как инструмент под контролем человека[1]. Bickman L. [25] изучая почти 50-летний опыт изучения ИИ отмечает существенный прогресс в этой области и трансформирующее влияние на психиатрическую науку и практику машинного обучения и искусственного интеллекта. Одной из важных областей применения ИИ в психиатрии является автоматизация создания систематических обзоров научной литературы. Традиционно систематический обзор требует громадных трудозатрат на отбор релевантных публикаций из множества источников. В работе [18] продемонстрировано, что модели глубокого обучения, такие как BERT и SciBERT, способны с высокой точностью автоматизировать отбор аннотаций статей для систематических обзоров по психиатрии. ИИ во взаимодействии со специалистами значительно сокращает временные и трудовые затраты. Наряду с исследовательскими целями, ИИ может внедряться в клиническую практику и образование врачей [48].