Читать книгу 120 практических задач онлайн

gen_images = generator.predict(noise)

gen_images = 0.5 * gen_images + 0.5

fig, axs = plt.subplots(image_grid_rows, image_grid_columns, figsize=(10, 10))

cnt = 0

for i in range(image_grid_rows):

for j in range(image_grid_columns):

axs[i,j].imshow(gen_images[cnt])

axs[i,j].axis('off')

cnt += 1

plt.show()

```

4. Генерация изображений

После завершения обучения, можно использовать генератор для создания новых изображений ландшафтов.

```python

noise = np.random.normal(0, 1, (1, latent_dim))

generated_image = generator.predict(noise)

generated_image = 0.5 * generated_image + 0.5 # Возвращение значений к диапазону [0, 1]

plt.imshow(generated_image[0])

plt.axis('off')

plt.show()

```

Этот код даст вам базовую генеративно-состязательную сеть для создания реалистичных изображений ландшафтов. Для улучшения качества изображений можно рассмотреть использование улучшенных архитектур GAN, таких как DCGAN или ProGAN.

31. Создание модели для прогнозирования спортивных результатов

Задача: Прогнозирование исходов спортивных событий

Прогнозирование исходов спортивных событий является одной из самых популярных и сложных задач в области аналитики данных и машинного обучения. Для создания такой модели необходимо учитывать множество факторов, начиная от индивидуальных характеристик игроков и команд, заканчивая погодными условиями и историей предыдущих матчей. Основные этапы разработки модели включают сбор данных, предобработку, выбор и обучение модели, а также оценку её эффективности.

1. Сбор данных

Для начала требуется собрать подробные данные о спортивных событиях. Это могут быть данные о предыдущих матчах, статистика команд и игроков, травмы, погодные условия, и другие релевантные параметры. Источники данных могут включать спортивные API, базы данных, и сайты, такие как ESPN, Opta, и другие.

2. Предобработка данных

Данные часто бывают разнородными и содержат много шума, поэтому их нужно очистить и подготовить:

– Очистка данных: удаление или замена пропущенных значений, исправление ошибок в данных.