Читать книгу 120 практических задач онлайн
Изменение количества нейронов
```python
# Скрытый слой с 256 нейронами
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Точность на тестовых данных с 256 нейронами: {test_acc}")
```
Использование другой функции активации:
```python
# Скрытый слой с функцией активации 'tanh'
model = models.Sequential()
model.add(layers.Dense(512, activation='tanh', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Точность на тестовых данных с активацией tanh: {test_acc}")
```
Использование другого оптимизатора:
```python
# Оптимизатор 'SGD'
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Точность на тестовых данных с оптимизатором SGD: {test_acc}")
```
Дополнительные методы предобработки данных и регуляризации
Регуляризация Dropout
```python
# Модель с Dropout
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=128)