Читать книгу 120 практических задач онлайн

– input_shape=(sequence_length, 1): Определяет форму входных данных, где `sequence_length` – это длина последовательности (например, 60 дней), а `1` – это количество признаков (в данном случае, только одно значение цены закрытия).

Второй слой LSTM

Второй слой LSTM принимает последовательность от первого слоя и возвращает конечный выход для всей последовательности. Здесь параметр `return_sequences` установлен в `False`, что означает, что слой будет возвращать только последний выходной элемент последовательности.

```python

model.add(layers.LSTM(50, return_sequences=False))

```

– 50 нейронов: Количество нейронов в втором слое LSTM, аналогично первому слою.

– return_sequences=False: Указывает, что слой должен возвращать только последний выход, который будет использоваться для прогнозирования.

Полносвязные слои

После обработки данных слоями LSTM, выходной вектор передается полносвязным слоям для окончательной классификации или регрессии. Полносвязные слои обеспечивают соединение каждого нейрона предыдущего слоя с каждым нейроном текущего слоя, что позволяет сети обучаться сложным нелинейным зависимостям.

```python

model.add(layers.Dense(25))

model.add(layers.Dense(1))

```

– Первый полносвязный слой:

– 25 нейронов: Полносвязный слой с 25 нейронами. Этот слой может использоваться для дополнительного обучения сложным паттернам в данных.

– Выходной слой:

– 1 нейрон: Выходной слой с одним нейроном, который будет выдавать прогнозируемую цену акции.

Эта архитектура сети, состоящая из двух слоев LSTM и двух полносвязных слоев, позволяет модели эффективно обрабатывать временные ряды и делать прогнозы на основе предыдущих данных. Первый слой LSTM возвращает полную последовательность, позволяя следующему слою LSTM дополнительно обучаться на временных зависимостях. Второй слой LSTM возвращает конечный выход, который затем передается через полносвязные слои для получения окончательного прогноза. Такая архитектура позволяет модели обучаться на длинных временных зависимостях и выдавать точные прогнозы цен на акции.