Читать книгу Искусственный интеллект. Машинное обучение онлайн
Этот анализ помогает выявить общие характеристики опухолей и потенциально помогает в их классификации или определении риска злокачественного развития.
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# Загрузка набора данных
breast_cancer_data = load_breast_cancer()
# Преобразование данных в DataFrame
data = pd.DataFrame(data=breast_cancer_data.data, columns=breast_cancer_data.feature_names)
# Добавление меток классов в DataFrame
data['target'] = breast_cancer_data.target
# Создание объекта KMeans с 2 кластерами (для злокачественных и доброкачественных опухолей)
kmeans = KMeans(n_clusters=2)
# Обучение модели на данных без меток классов
kmeans.fit(data.drop('target', axis=1))
# Получение меток кластеров для каждого образца
cluster_labels = kmeans.labels_
# Визуализация кластеров
plt.scatter(data['mean radius'], data['mean texture'], c=cluster_labels, cmap='viridis')
plt.xlabel('Mean Radius')
plt.ylabel('Mean Texture')
plt.title('KMeans Clustering')
plt.show()
Пример 3
Давайте возьмем набор данных о покупках клиентов в магазине и применим к нему метод кластеризации K-means. В этом примере мы будем использовать набор данных "Mall Customer Segmentation Data", который содержит информацию о клиентах магазина и их покупках.
```python
# Импортируем необходимые библиотеки
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Загружаем данные
data = pd.read_csv('mall_customers.csv')
# Посмотрим на структуру данных
print(data.head())
# Определяем признаки для кластеризации (в данном случае возраст и расходы)
X = data[['Age', 'Spending Score (1-100)']].values
# Стандартизируем данные
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Определяем количество кластеров
k = 5
# Применяем метод кластеризации K-means
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_scaled)
y_pred = kmeans.predict(X_scaled)