Читать книгу Искусственный интеллект. Машинное обучение онлайн

Применение модели: После успешного тестирования и оценки модели, мы можем использовать ее для автоматического определения спама в реальном времени для новых электронных писем, поступающих в почтовый ящик.

Рассомтрим пример простого кода на Python для решения задачи классификации спама в электронных письмах с использованием наивного байесовского классификатора и библиотеки scikit-learn:

```python

# Импорт необходимых библиотек

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# Подготовка обучающих данных

emails = ['Письмо с текстом…', 'Еще одно письмо…', …] # Список электронных писем

labels = [0, 1, …] # Метки: 0 – не спам, 1 – спам

# Преобразование текстов писем в числовые признаки

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(emails)

# Разделение данных на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

# Создание и обучение модели наивного байесовского классификатора

model = MultinomialNB()

model.fit(X_train, y_train)

# Прогнозирование меток для тестового набора данных

y_pred = model.predict(X_test)

# Оценка качества модели

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

В этом коде мы используем библиотеку scikit-learn для создания наивного байесовского классификатора и выполнения всех необходимых шагов: преобразование текстов писем в числовые признаки с помощью CountVectorizer, разделение данных на обучающий и тестовый наборы, обучение модели и оценку ее качества.

Обучение с учителем в данном коде происходит следующим образом:

1. Подготовка обучающих данных: Создается список `emails`, содержащий тексты электронных писем, и список `labels`, содержащий метки для этих писем (0 – не спам, 1 – спам). Каждое письмо связывается с соответствующей меткой, предоставляя модели информацию о правильных ответах.