Читать книгу Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков онлайн

Аэрофотографические эталоны делятся на:

селективные – основанные на подборе аналогичных фотоизображений;

элиминативные – основанные на сопоставлении совокупностей фотоизображений и исключении непохожих (дисковые и дихотомические).

Основной задачей дешифрирования является повышение дешифровочных характеристик полученных изображений путем применения к ним программных инструментов для обработки изображений и включает в себя выполнение следующих задач:

– управление видимостью изображений в интерфейсе программного комплекса, включая фильтрацию списка загруженных изображений по различным критериям и настройку прозрачности изображений;

– фильтрация шумов различной природы на изображениях;

– обрезка (кадрирование) изображений;

– уточнение навигационных данных для изображений на основе модели датчика и данных пилотажно-навигационного комплекса;

– корректировка координатной привязки изображений по опорным точкам на местности с использованием опорной геопространственной информации.

Задачей детального дешифрирования являются обнаружение и классификация объектов на полученных изображениях и сохранение объектов в базе данных (БД). Детальное дешифрирование изображений, прошедших этап обзорного дешифрирования, включает в себя выполнение следующих задач:

– автоматизированное обнаружение и классификация на изображениях объектов, для которых в базе данных имеются эталонные вектора признаков;

– визуальное обнаружение и классификация объектов;

– сохранение результатов дешифрирования в БД.

При выполнении задачи визуального обнаружения объектов предоставляется визуальная поддержка дешифрирования для классов объектов, по которым в БД присутствует эталонная информация. По результатам детального дешифрирования формируется донесение.

Традиционные подходы при разработке алгоритмов классификации сводятся к выбору формального описания объектов, построению БД с наиболее характерными описаниями (эталонными векторами признаков) для каждого класса и дальнейшим сопоставлением векторов признаков объектов с БД эталонов, представляющих портрет объекта в различном диапазоне длин волн: оптическом, радиолокационном. Формирование БД портретов (эталонов) объектов является самой трудоемкой частью такого подхода и требует экспертных знаний по разработке системы распознавания.