Читать книгу Решение дифференциальных уравнений первой и второй степени с помощью ИИ. Вариант 1 онлайн
Теперь возьмем производные по очереди:
Найдем y’: y’ = (C * e^x)» + (x * e^x)». Учитывая производные экспонент и произведения функций, получаем: y’ = C * e^x + e^x + x * e^x.
Подставим y и y’ в уравнение y’ – y = e^x: (C * e^x + e^x + x * e^x) – (C * e^x + x * e^x) = e^x.
Сокращаем одинаковые члены:
e^x = e^x.
Получили верное тождество, что подтверждает, что найденное решение y = C * e^x + x * e^x удовлетворяет исходному дифференциальному уравнению y’ – y = e^x.
Решить y’ – y = e^x. Проверить решение
ChatGPT на Русском – Chat GPT
Для уравнения (y’ – y = e^x), общее решение можно представить в виде (y = C \cdot e^x + x \cdot e^x), где (C) – произвольная постоянная, «\cdot» эквивалентно знаку умножения «*».
Теперь найдем производную (y’):
[y’ = C \cdot e^x + e^x + x \cdot e^x]
Подставим (y) и (y’) обратно в исходное уравнение:
[y’ – y = (C \cdot e^x + e^x + x \cdot e^x) – (C \cdot e^x + x \cdot e^x) = e^x]
(e^x) слева и справа уравнения сокращаются, следовательно, уравнение верно для всех значений (x). Таким образом, общее решение (y = C \cdot e^x + x \cdot e^x) верно для уравнения (y’ – y = e^x).
Решить y’ – y = e^x. Проверить решение
GPTutor
Для решения данного линейного дифференциального уравнения первого порядка у – у = е х используем метод интегрирующего множителя.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.